[a] Find all intervals on which f is continuous.

> X IS CONT. ON IR Inx is cont. on (0,00) XInx # O F Inx # O 16, X # 1,

Find the limit of f at each discontinuity. [b]

Each limit should be a number, ∞ or $-\infty$. Write DNE only if the other possibilities do not apply.

 $\lim_{|x\to 1^+} \frac{1}{x \ln x} = \infty \quad \text{SO} \quad \lim_{|x\to 1^-} \frac{1}{x \ln x} \quad \text{DNE}$ $\frac{1}{1\cdot 0^+} \quad \text{(3)}$

(X=O IS NOT A DISCONTINUITY SINCE f IS NOT DEPINED IN AN OPEN INTERVAL AROUND X=0)

- [c] State the type of each discontinuity in [b].
 - X= O INFINITE DISCONTINUITY
- [d] Find the equations of all horizontal asymptotes of f.

3 Im XInx DIE SINCE & IS NOT DEFINED FOR XX O

6 km xlnx = 0

HORIZONTAL ASYMPTOTE

State the formal definition of "jump discontinuity".	SCORE: _	/ 10 PTS
of HAS A JUMP DISCONTINUITY AT a	LIF.	
lim f(x) and lim f(x) EXIST BUT		
4	(4)	

State the Squeeze Theorem. SCORE: / 10 PTS IF $f(x) \leq g(x) \leq h(x)$, FOR ALL X IN AN OPENINTERVAL AROUND a, EXCEPT POSSIBLY ATA, AND lim f(x)=limh(x)=L

At time t hours, the position of an object moving along a line is $s(t) = 4t^2 - t^3$ kilometers.

Find the instantaneous velocity of the object at time t = 2. Give the units of your answer.

$$\lim_{b \to 2} \frac{S(b) - S(2)}{b - 2}$$

$$= \lim_{b \to 2} \frac{4b^2 - b^3 - 8}{b - 2} \bigcirc$$

=
$$\lim_{b\to 2} (-b^2 + 2b + 4) (7)$$

SCORE: _____/ 20 PTS

If $f(x) = \frac{x}{3-2x}$, find f'(x).

$$\lim_{h\to 0} \frac{x+h}{3-2(x+h)} - \frac{x}{3-2x} \qquad (3-2(x+h))(3-2x)$$

$$= \lim_{h\to 0} \frac{(x+h)(3-2x) - x(3-2x-2h)}{h(3-2x-2h)(3-2x)}$$

$$= \lim_{h\to 0} \frac{3x+3h-2x^2-2xh-3x+2x^2+2xh}{h(3-2x-2h)(3-2x)}$$

$$= \lim_{h\to 0} \frac{3}{h(3-2x-2h)(3-2x)} = \lim_{h\to 0} \frac{3}{h(3-2x-2h)(3-2x)}$$

4) BACH

Find a function f and a <u>non-zero</u> number a such that the derivative of f at a is given by

SCORE: _____ / 15 PTS

$$\lim_{h\to 0} \frac{4\arctan(h-1) + \pi}{h} = \lim_{h\to 0} \frac{4\arctan(-1+h) - (-\pi)}{h} = \lim_{h\to 0} \frac{f(a+h) - f(a)}{h}$$
That your answers are correct using the definition of the derivative et a point.

Show that your answers are correct using the definition of the derivative at a point.

The graph of f(x) is shown below. Sketch a graph of f'(x) on the same axes. SCORE: /15 PTS Prove that the equation $x^2 = 1 + \sqrt[3]{x}$ has a solution in the interval (-1, 1). SCORE: /15 PTS X2-3[V=1 LET, F(x) = x2-3/x f is continuous on R since x2, 3/X ARE BOTH CONTINUOUS ON R, AND SO IS THEIR DIPPERENCE (A) f(-1)=1-(-1)=2 f(1)= |- 1=0 (2) EACH EXCEPT AS NOTED f(1) < 1 < f(-1). BY IVT, f(x) = x2-3/x=1 FOR SOME X E(-1,1), 1E. X=1+3/V